13 research outputs found

    Early remodeling of the neocortex upon episodic memory encoding

    Get PDF
    Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal–hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.Picower Institute for Learning and Memory (Innovation Fund)Massachusetts Institute of Technology. Department of Brain and Cognitive SciencesBrightFocus Foundation (Research Fellowship A2013026F

    Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain

    Get PDF
    Brain region-specific deposition of extracellular amyloid plaques principally composed of aggregated amyloid-β (Aβ) peptide is a pathological signature of Alzheimer’s disease (AD). Recent human neuroimaging data suggest that resting-state functional connectivity strength is reduced in patients with AD, cognitively normal elderly harboring elevated amyloid burden, and in advanced aging. Interestingly, there exists a striking spatial correlation between functional connectivity strength in cognitively normal adults and the location of Aβ plaque deposition in AD. However, technical limitations have heretofore precluded examination of the relationship between functional connectivity, Aβ deposition, and normal aging in mouse models. Using a novel functional connectivity optical intrinsic signal (fcOIS) imaging technique, we demonstrate that Aβ deposition is associated with significantly reduced bilateral functional connectivity in multiple brain regions of older APP/PS1 transgenic mice. The amount of Aβ deposition in each brain region was associated with the degree of local, age-related bilateral functional connectivity decline. Normal aging was associated with reduced bilateral functional connectivity specifically in retrosplenial cortex. Furthermore, we found that the magnitude of regional bilateral functional correlation in young APP/PS1 mice prior to Aβ plaque formation was proportional to the amount of region-specific plaque deposition seen later in older APP/PS1 mice. Together, these findings suggest that Aβ deposition and normal aging are associated with region-specific disruption of functional connectivity and that the magnitude of local bilateral functional connectivity predicts regional vulnerability to subsequent Aβ deposition in mouse brain

    Community pharmacy interventions for health promotion: effects on professional practice and health outcomes (Protocol)

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows: Primary objective To assess the effectiveness of health promotion interventions in community pharmacy practice settings on pharmacy workers and pharmacy clients (including diagnosed patients) when compared to i) No treatment controls ii) Usual treatment controls iii) Other active intervention Secondary objectives To assess whether there are differences in effectiveness of health promotion interventions in community pharmacy practice settings on i) Pharmacy worker ii) Client (patient) with regard to: i) Ethnicity of patients ii) Country income level (World Bank Group 2009) iii) Extent of adverse health behaviour (defined according to national guidelines where available) iv) Type of pharmacy worker delivering the intervention (e.g. pharmacist versus pharmacist technician) v) Theoretical constructs/components and behaviour change techniques employed in the intervention vi) Costs of health car

    Epigenetic Priming of Memory Updating during Reconsolidation to Attenuate Remote Fear Memories

    No full text
    Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.National Institute of Neurological Disorders and Stroke (U.S.)/National Institute on Aging (NS078839)Picower Institute for Learning and Memory (Neurological Disorder Fund)Stanley Medical Research InstituteHoward Hughes Medical InstituteBard Richmond Fellowshi

    Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer\u27s disease

    No full text
    We examined the effects of voluntary (16 weeks of wheel running) and forced (16 weeks of treadmill running) exercise on memory-related behavior, hippocampal volume, thioflavine-stained plaque number, and soluble Aβ levels in brain tissue in the Tg2576 mouse model of Alzheimer\u27s disease (AD). Voluntary running animals spent more time investigating a novel object in a recognition memory paradigm than all other groups. Also, voluntary running animals showed fewer thioflavine S stained plaques than all other groups, whereas forced running animals showed an intermediate number of plaques between voluntary running and sedentary animals. Both voluntary and forced running animals had larger hippocampal volumes than sedentary animals. However, levels of soluble Aβ-40 or Aβ-42 did not significantly differ among groups. The results indicate that voluntary exercise may be superior to forced exercise for reducing certain aspects of AD-like deficits — i.e., plaque deposition and memory impairment, in a mouse model of AD
    corecore